Flyer

Health Science Journal

  • ISSN: 1791-809X
  • Journal h-index: 61
  • Journal CiteScore: 17.30
  • Journal Impact Factor: 18.23
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • Genamics JournalSeek
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • CINAHL Complete
  • Scimago
  • Electronic Journals Library
  • Directory of Research Journal Indexing (DRJI)
  • EMCare
  • OCLC- WorldCat
  • MIAR
  • University Grants Commission
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • Google Scholar
  • SHERPA ROMEO
  • Secret Search Engine Labs
Share This Page

Abstract

AI-Driven Diagnostic Tools in Oncology Transforming Cancer Detection and Management

Cecily O'Sullivan*

Artificial intelligence (AI) is revolutionizing the field of oncology by enhancing diagnostic accuracy and enabling personalized treatment strategies. AI-driven diagnostic tools, which utilize machine learning and deep learning algorithms, are being integrated into clinical workflows to analyze complex datasets, including imaging, genomics, and electronic health records. This article reviews the current landscape of AI-driven diagnostic tools in oncology, highlighting their applications, benefits, challenges, and future prospects. By improving early detection and treatment personalization, these tools hold the potential to significantly enhance patient outcomes in cancer care.

Published Date: 2024-10-30; Received Date: 2024-10-01