Dipak Ghosh, Srimonti Dutta, Sayantan Chakraborty* and Shukla Samanta
Background: Myopathies (MYO) are a group of disorders in which the muscle fibers do not function for any one of many reasons, resulting in muscular weakness and/ or muscle dysfunction. Neuropathies (NEURO) describe damage to the peripheral nervous system which transmits information from the brain and spinal cord to every other part of the body. The analysis of Electromyography (EMG) signals provides important information to aid in the diagnosis and characterization of Motor Neuron Disease (MND) and any neuromuscular disorders like myopathy and neuropathy.
Methods and findings: In this paper we have proposed a rigorous and robust nonlinear technique (multifractal detrended fluctuation analysis, MF-DFA) to study the multifractal properties of EMG signals of two subjects with neuromuscular disorders (myopathy and neuropathy). We observed that a quantitative parameter, multifractal width, which signifies the degree of complexity of the signals, is significantly different for subjects of neuromuscular disorders compared to healthy subject. Another quantity, the auto-correlation exponent shows significant differences in the degree of auto-correlation for different signals.
Conclusion: These quantitative parameters, multifractal width and autocorrelation exponent can be used as a biomarker for diagnosis and prognosis of both MYO and NEURO, and even for early detection of MND.