Flyer

Translational Biomedicine

  • ISSN: 2172-0479
  • Journal h-index: 18
  • Journal CiteScore: 5.91
  • Journal Impact Factor: 4.11
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • Open J Gate
  • Genamics JournalSeek
  • JournalTOCs
  • ResearchBible
  • The Global Impact Factor (GIF)
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Scimago
  • Electronic Journals Library
  • Directory of Research Journal Indexing (DRJI)
  • OCLC- WorldCat
  • Proquest Summons
  • Publons
  • MIAR
  • University Grants Commission
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • Google Scholar
  • SHERPA ROMEO
  • Secret Search Engine Labs
  • ResearchGate
  • International Committee of Medical Journal Editors (ICMJE)
Share This Page

Abstract

Chlamydia pneumoniae CdsQ functions as a multicargo transport protein, delivering chaperone - effector complexes to the type III secretion ATPase, CdsN

Raman K. Toor , Chris B. Stone , James B. Mahony

Chlamydia pneumoniae is a Gram-negative, obligate intracellular pathogen thatutilizes a type III secretion system (T3SS) to facilitate invasion of host cells. In C.pneumoniae, CdsN, the T3SS ATPase, has been proposed to facilitate unfoldingof effector proteins by releasing their cognate chaperones. CdsQ is thought tobe the C-ring ortholog of FliN, which interacts with effectors, chaperones, andstructural proteins. We have previously shown that CdsQ interacts with CdsN,however, the role of this interaction is unclear. In this paper, we explored the interactionof CdsQ and CdsN with other T3S components. We identified four novelinteractions between CdsQ and CopN, the YopN plug protein ortholog, Cpn0706,a putative chaperone, Cpn0827, a putative novel effector and LcrH-2, a putativechaperone, all of which have not previously been identified in other T3SS. CdsNhas been shown previously to interact with CopN and Cpn0706 and we reporttwo novel interactions between CdsN and Cpn0827 and LcrH-2. Our findings thatCdsQ binds multiple effectors (Cpn0827 and CopN) and chaperones (LcrH-2 andCpn0706) suggests that CdsQ may act as a multi-cargo transport protein thatshuttles chaperone-effector complexes to the base of the apparatus where CdsQcomplexes may act as a protein scaffold to position chaperone-effector complexesin the context of hexameric CdsN for chaperone release and effector secretion. Wediscuss these new interactions in the context of chaperone-effector delivery andhierarchical secretion of effector proteins in C. pneumoniae.