Flyer

International Journal of Drug Development and Research

  • ISSN: 0975-9344
  • Journal h-index: 51
  • Journal CiteScore: 46.50
  • Journal Impact Factor: 26.99
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • Genamics JournalSeek
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Scimago
  • Directory of Research Journal Indexing (DRJI)
  • OCLC- WorldCat
  • Publons
  • MIAR
  • University Grants Commission
  • Euro Pub
  • Google Scholar
  • J-Gate
  • SHERPA ROMEO
  • Secret Search Engine Labs
  • ResearchGate
  • International Committee of Medical Journal Editors (ICMJE)
Share This Page

Abstract

Design and Characterization of sustained release Microspheres of Acarbose

Kaurav Hemlata, Harikumar S.L. and Kaur Amanpreet

The present study was envisaged to reduce the dosing frequency and improve patient compliance by designing and evaluating sustained release microspheres of acarbose for effective control of type-II diabetes mellitus. Microspheres were prepared by emulsification solvent evaporation method using sodium alginate and HPMC K15M as sustained release agents. The prepared microspheres were evaluated for particle size, drug content, surface morphology, drug entrapment efficiency, flow properties, in vitro drug release and stability studies. The drug excipients compatibility was determined by FTIR studies. The surface morphology of prepared microspheres was measured by SEM and the particle size distribution was determined using an optical microscope. The particles were found to be discrete and spherical with the average particle size in the range of 91±1.24 to 207±1.49μm. The formed acarbose microspheres showed high drug entrapment efficiency of 74.01 to 88.9%. The effect of factors like concentration of polymer, emulsifying agent, stirring speed, alginate: HPMC ratio on drug entrapment efficiency, morphology and drug release was studied. In vitro results showed that the formulation F3 containing 1:1 ratio of sodium alginate and HPMC K15 M released maximum amount of drug i.e. 36.17% (pH 1.2) and 95.83% (pH 7.4) due to the proper cross linking between sodium alginate and HPMC K15 M.