Flyer

Translational Biomedicine

  • ISSN: 2172-0479
  • Journal h-index: 18
  • Journal CiteScore: 5.91
  • Journal Impact Factor: 4.11
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • Open J Gate
  • Genamics JournalSeek
  • JournalTOCs
  • ResearchBible
  • The Global Impact Factor (GIF)
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Scimago
  • Electronic Journals Library
  • Directory of Research Journal Indexing (DRJI)
  • OCLC- WorldCat
  • Proquest Summons
  • Publons
  • MIAR
  • University Grants Commission
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • Google Scholar
  • SHERPA ROMEO
  • Secret Search Engine Labs
  • ResearchGate
  • International Committee of Medical Journal Editors (ICMJE)
Share This Page

Abstract

Evaluating the Antibacterial Potential of Streptomyces sp.

Sujith Sugathan, Aseer Manilal, Tigist Gezmu, Behailu Merdekios, Joseph Selvin, Tsegaye Tsalla, Akbar Idhayadhulla and Shine Kadaikunnan

Background and Objectives: Marine bacteria are recognized as an untapped resource of bioactive metabolites of diverse structure and functions. The present research is focused on the screening of the antagonistic potential of bacteria isolated from marine sponge against human and shrimp pathogens.

Methods and Findings: In this study, a total of 51 strains of bacteria isolated from five species of marine sponges sourced from the Vizhinjam littoral (Indian Ocean) were screened for possible antagonistic activity against human and shrimp pathogens. Of the 51 bacterial isolates, twelve strains isolated from marine sponges, S.officinalis and D. nigra showed different ranges of activity. The results of agar-well diffusion assay showed that, out of the twelve strains, MAPS 15 strain showed the highest
activity which subdued the growth of all the tested 20 bacterial pathogens. The molecular characterization based on partial 16S rRNA sequence revealed that the active isolate MAPS 15 was Streptomyces sp.

Conclusion: This study serves as a basis for further research on the possibility of utilizing Streptomyces sp. for the development of human and veterinary grade antibiotics.