Flyer

International Journal of Drug Development and Research

  • ISSN: 0975-9344
  • Journal h-index: 51
  • Journal CiteScore: 46.50
  • Journal Impact Factor: 26.99
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • Genamics JournalSeek
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Scimago
  • Directory of Research Journal Indexing (DRJI)
  • OCLC- WorldCat
  • Publons
  • MIAR
  • University Grants Commission
  • Euro Pub
  • Google Scholar
  • J-Gate
  • SHERPA ROMEO
  • Secret Search Engine Labs
  • ResearchGate
  • International Committee of Medical Journal Editors (ICMJE)
Share This Page

Abstract

Formulation and Optimization of Clarithromycin Loaded with Pullulan Acetate Microsphere for Sustained Release by Response Surface Methodology

Mishra B*, Harthik Reddy K, Manikanta A, Anand A and Sharath Kumar Raju M

The aim of this investigation was to develop and optimize Claritromycin loaded with pullulan acetate for sustained release application by response surface methodology based on factorial design with reduced 2FI Model. Total 8 formulations (F1, F2, F3, F4, F5, F6, F7 and F8) were prepared, out of which F5 was found to be best formulation for the sustained release of the Clarithromycin. Further, Various parameters like RPM, Time, Drug (Clarithromycin) Concentration and Pullulan acetate concentration were optimized with respect to F5. It was found that RPM and Time were having more effect as compared to Clarithromycin and Pullulan acetate concentration for sustained release of the drug. The 3D response plot were drawn and optimum interactions were selected by feasibility and grid searches. The observed responses were coincided well with the predicted values by the experimental design. The optimized formulation F5 showed prolonged sustained release of Clarithromycin over 7 hours. The release profile of the drug loaded microsphere reveals that pH of the medium was influencing it at in vitro condition. In the optimized conditions, the sustained release can be reached up to 9 h. Therefore Pullulan acetate loaded with Clarithromycin is a useful polymerised materials for the development and formulation of pH sensitive drug.