Flyer

Translational Biomedicine

  • ISSN: 2172-0479
  • Journal h-index: 18
  • Journal CiteScore: 5.91
  • Journal Impact Factor: 4.11
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • Open J Gate
  • Genamics JournalSeek
  • JournalTOCs
  • ResearchBible
  • The Global Impact Factor (GIF)
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Scimago
  • Electronic Journals Library
  • Directory of Research Journal Indexing (DRJI)
  • OCLC- WorldCat
  • Proquest Summons
  • Publons
  • MIAR
  • University Grants Commission
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • Google Scholar
  • SHERPA ROMEO
  • Secret Search Engine Labs
  • ResearchGate
  • International Committee of Medical Journal Editors (ICMJE)
Share This Page

Abstract

In-silico Study to elucidate corona Virus by plant phytoderivatives that hits as a fusion inhibitors targeting HR1 domain in spike protein which conformational Changes efficiently inhibit entry COVID-19

MOHAMMAD NADEEM KHAN

Introduction: COVID-19 could be a human beta corona virus that have potential source of severe widespread respiratory and asymptomatic multiple pathophysiological conditions and is belonging to the SARS and MERS β-corona viruses linage that have inflated mortality rates and acute potential of pandemic. The viral envelope surface spike glycoprotein (S) binding with host cell receptor angiotensin-converting enzyme 2 (ACE2) and conciliate fuse the virus particle inside the host cell membranes, promising spike protein substantially important to endocytosis and host species an involuntary orienting response.

Methods: Within the present in-silico study, two plant bioactive compounds namely ALS-1 and ALS-2 (from Alangium salvifolium) were analyzed for his or her inhibitory role on fusion peptide region or S2 HR-1 domain and efficiently block virus entry into host cell by applying the molecular simulation, docking studies. Other parameters viz. determination of molecular interaction-based binding affinity values, protein-ligand interactions, Lipinski rule of 5, functional properties and biological activities for the above compounds were also calculated by employing the acceptable bioinformatics tools.

Results: The results of docking analysis clearly showed that ALS-1 has highest binding affinity with trimeric Spike glycoprotein (-11.6 kcal/mole) and ALS-2 (-10.8 kcal/mole). Based on protein interaction analysis both phytoderivatives bind HR-1 (fusion peptide) domain. Other parametric results showed good absorption activity and not violated Lipinski score of drug-likeness.

Conclusion: Therefore studied plant derivatives may have the potential to play a big role as 2019 n-CoV fusion peptide inhibitor, revealing influential inhibitory activity against S-participated endocytosis and 2019 n-CoV viral infection, suggesting further optimizations (3-DQASR) and pharmaceutical development of both derivatives, respectively, to stop and treat novel COVID-19 infection.