Flyer

Journal of Biomedical Sciences

  • ISSN: 2254-609X
  • Journal h-index: 18
  • Journal CiteScore: 4.95
  • Journal Impact Factor: 4.78
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • Genamics JournalSeek
  • China National Knowledge Infrastructure (CNKI)
  • Directory of Research Journal Indexing (DRJI)
  • OCLC- WorldCat
  • Euro Pub
  • Google Scholar
  • J-Gate
  • SHERPA ROMEO
  • Secret Search Engine Labs
  • International Committee of Medical Journal Editors (ICMJE)
Share This Page

Abstract

Novel Handheld Diffuse Optical Spectroscopy Probe for Breast Cancer Assessment: Clinical Study

Majid Shokoufi, Zahra Haeri, Birkanwar S Kharbanda and Farid Golnaraghi

Diffuse optical spectroscopy (DOS) and diffuse optical tomography (DOT) are non-invasive breast cancer assessment modalities which employ near-infrared (NIR) light to measure optical properties of biological tissue. These properties cannot be measured by other methods including X-ray mammography, ultrasound (US) and magnetic resonance imaging (MRI) which are main breast cancer diagnosis tools. The objective of this paper is to test and validate a recently designed and developed hand-held continuous-wave radio-frequency modulated diffuse optical spectroscopy probe in a clinical trial performed on patients who diagnosed to have breast cancer. The probe has an encapsulated light emitting diode (eLED) including four wavelengths (690 nm, 750 nm, 800 nm and 850 nm) and two photodiodes located in reflectance geometry. The direct approach method has been used to extract concentration of two main chronophers in the breast tissue including deoxy-hemoglobin (Hb) and oxy-hemoglobin (HbO2). The results of the clinical trial, which included fourteen patients, show that the RF-DOS probe can correctly classify the cancerous lesion from healthy tissue in the breast. The results prove that the absorption coefficient of the breast tumor is higher than normal tissue due to higher vascularization level in four mentioned wavelengths. Conclusively, the results show 92 percent sensitivity for the extracted absorption coefficient.