Flyer

Health Science Journal

  • ISSN: 1791-809X
  • Journal h-index: 61
  • Journal CiteScore: 17.30
  • Journal Impact Factor: 18.23
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • Genamics JournalSeek
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • CINAHL Complete
  • Scimago
  • Electronic Journals Library
  • Directory of Research Journal Indexing (DRJI)
  • EMCare
  • OCLC- WorldCat
  • MIAR
  • University Grants Commission
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • Google Scholar
  • SHERPA ROMEO
  • Secret Search Engine Labs
Share This Page

Abstract

Patient Model for Colon and Colorectal Cancer Care Trajectory Simulation

Quentin Gilli, Karam Mustapha, Jean-Marc Frayret, Nadia Lahrichi and Elnaz Karimi

Colon and Colorectal cancer are a diagnosis of particular concern for older Canadians. They are the second cancer in terms of rate of incidence and mortality among Canadians after lung cancer. Treatment of colon and colorectal cancer requires a complex decision-making process of treatment. These treatments may involve surgery and either pre- or post-operative radiation or chemotherapy, which can have a great impact on the quality of life of patients due to the rigorous requirements of treatment and the inconvenient side effects. This paper is the first developmental step of an agent-based simulation platform aiming at simulating colon and colorectal cancer patient care trajectories in a hospital. In this study, we describe a virtual patient agent, which includes a cancer evolution model, capable of replicating cancer behavior in response to treatment. Simulation results show promising interpolation results with respect to chemotherapy dosage and radiotherapy dosage. However, the model ability to interpolate different administration protocols is still limited, and therefore require calibration for each protocol.