Flyer

Journal of FisheriesSciences.com

  • Journal h-index: 32
  • Journal CiteScore: 28.03
  • Journal Impact Factor: 24.27
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • Academic Journals Database
  • Genamics JournalSeek
  • The Global Impact Factor (GIF)
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Electronic Journals Library
  • Centre for Agriculture and Biosciences International (CABI)
  • Directory of Research Journal Indexing (DRJI)
  • OCLC- WorldCat
  • Proquest Summons
  • Publons
  • MIAR
  • Advanced Science Index
  • International committee of medical journals editors (ICMJE)
  • Euro Pub
  • Google Scholar
  • J-Gate
  • Chemical Abstract
  • SHERPA ROMEO
  • Secret Search Engine Labs
  • ResearchGate
  • University of Barcelona
Share This Page

Abstract

Rotten thallus of Red Seaweed, Gracilariopsis heteroclada Zhang et Xia, is Associated with Agar-Digesting Bacillus spp

Joval N. Martinez and Philip Ian P. Padilla

Agar-digesting bacteria have been hypothesized to cause rottening of the thalli of economically important marine red seaweeds, Gracilariopsis heteroclada Zhang et Xia (Gracilariaceae, Rhodophyta). However, characterization of these causative agents accompanying seaweeds’ disease in the marine environment has been poorly elucidated. Thus, agar-digesting bacteria associated with ‘rottening thallus’ of red seaweed, were isolated and characterized. Agar-digesters were selected based on their ability to digest agar by forming a clear depression around their colony and/or liquefaction of agar. Selected agar-digesters showed a positive result for gelatinase test and arginine dihydrolase test. 16S rRNA of these isolates was successfully extracted, purified, sequenced and analyzed. Phylogenetic analyses showed that bacterial 16S rRNA sequences from rottening seaweed thalli belong to Bacillus spp (98-99%), suggesting that the isolates were significantly associated with the rottening of red seaweeds in the present investigation.