Flyer

Journal of Biomedical Sciences

  • ISSN: 2254-609X
  • Journal h-index: 18
  • Journal CiteScore: 4.95
  • Journal Impact Factor: 4.78
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • Genamics JournalSeek
  • China National Knowledge Infrastructure (CNKI)
  • Directory of Research Journal Indexing (DRJI)
  • OCLC- WorldCat
  • Euro Pub
  • Google Scholar
  • J-Gate
  • SHERPA ROMEO
  • Secret Search Engine Labs
  • International Committee of Medical Journal Editors (ICMJE)
Share This Page

Abstract

Transplantation of Wharton�¢����s Jelly Mesenchymal Stem Cells to Improve Cardiac Function in Myocardial Infarction Rats

Chen-Yuan Hsiao, Pei-Jiun Tsai, Pei-Chun Chu, Shin-I Liu, Chia-Hsin Pan, Chie-Pein Chen, Cheng-Hsi Su, Zen-Chung, Weng, Tien-Hua Chen, Jia-Fwu Shyu, Hsiao-Huang Chang,  Hwai-Shi Wang

Background: Myocardial infarction (MI) is a fatal disease that is increasing in incidence. The worst sequelae of MI include myocardial fibrosis and deterioration of pumping function that can lead to irreversible heart failure. This study aims to compare the therapeutic effect of undifferentiated versus TGF-β2–stimulated Wharton’s jelly mesenchymal stem cells (WJ-MSCs) in MI rats.

Results: Left anterior descending (LAD) artery ligation-induced myocardial infarct rats were used to evaluate changes in left ventricular function and fibrosis following injection of PBS or 1.6 × 106 undifferentiated or TGF-β2–stimulated WJ-MSCs into the border zone myocardium. Electrocardiograph, echocardiogram, serum cardiac Troponin I level, Masson’s Trichrome staining, immunohistochemistry were used to analyze the therapeutic effects. We found that transplantation of both undifferentiated and TGF-β2 stimulated WJ-MSCs decreased serum Cardiac Troponin I levels, improved fractional shortening, ameliorated ejection fraction changes, and decreased the area of myocardial fibrosis. Moreover, some of the transplanted human WJ-MSCs survived in the myocardium.

Conclusions: Transplantation of either undifferentiated or TGF-β2 stimulated WJ-MSCs improved left ventricular function after MI and increased survival. The effects were most marked using undifferentiated WJ-MSCs. These results indicate WJMSCs as a potential stem cell source for use in myocardial infarct therapy.