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Beyond Alzheimer’s Disease: APOE ε4 and the 
Aging Brain

Abstract
The majority of individuals who carry the apolipoprotein ε4 allele will not develop 
dementia in their lifetime. Previous literature documents the elevated risk for 
Alzheimer’s Disease (AD) among ε4 carriers. However, more recent evidence from 
longitudinal studies suggests that these risks may be overestimated. Nonetheless, 
many cross-sectional studies indicate that older ε4 carriers may experience 
poorer performance on tests of episodic memory compared to noncarriers. By 
themselves, these studies cannot disentangle ε4’s influence on brain structure and 
function from the effects of AD neuropathology. In this brief review, we discuss 
several ways in which ε4 can impact brain aging informed by animal models. We 
emphasize the importance of taking an individualized approach in future studies 
by incorporating blood and CSF biomarkers as well as novel neuroimaging pulse 
sequences that can help differentiate ε4’s role in cognitive aging from its impact 
on AD pathology.
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Introduction
Beyond risk for Alzheimer’s diseases 
Age-Related Cognitive Impairment (ARCI) contributes to 
decreased quality of life, increased risk for hospitalization, loss 
of independence, and higher overall mortality [1,2]. While 
the majority of older adults – more than 85% will not develop 
Alzheimer’s Disease (AD) in their lifetime, one in three older 
adults without dementia will experience declines in memory, 
visual-spatial abilities and executive functions ranging from 
mild to severe [2,3]. Understanding the risks for cognitive 
impairment, as well as potential resilience factors, is a critical 
first step in developing interventions to prevent and treat ARCI 
[1]. In this article, we provide a brief update on the risks for ARCI 
associated with the apolipoprotein ε4 allele (APOE ε4). Based on  
recent animal models, we now recognize that ε4 impacts brain 
structure and function in multiple ways that are independent 
from AD pathology. In contrast to the prevailing view, cognitive 
impairments among APOE ε4 carriers are inconsistent and are 
not reliably related to preclinical AD. We highlight the importance 
of taking a “precision aging” approach to research, focusing on 
individual differences in profiles of risk in order to better predict 
the trajectory of cognitive change [1].

Literature Review
E4 mechanisms impacting brain aging
The exacerbating influence of the apolipoprotein-E lipid transport 

) on AD pathology  is  well  documented 
[4-6].  increases accumulation of Aβ and tau aggregation 
and interferes with normal clearance of Aβ by decreasing resident 
microglia’s migration toward amyloid plaques and reducing Aβ 
phagocytosis [4,5,7-9]. However, recent longitudinal studies 
suggest that the risk for developing AD associated with APOE ε4 
may be lower than originally thought. Compared to early studies 
estimating 3 to 4-fold risk for carrying one ε4 allele and as high as 
15-fold risk for two ε4 alleles, more recent studies report hazard 
ratios ranging from 1.2 to 1.8 [10-13]. Two recent large-scale 
population studies in the United Kingdom and Denmark found 
that more than 95% of ε4-positive older adults did not develop 
dementia over 12- and 10-year follow-up periods, respectively 

Independent of AD neuropathologies, other mechanisms have 
emerged from knock-in human  mouse models that 
have the potential to negatively impact the aging brain. 
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inflammation and excessive cytokine production in response to 
pro-inflammatory insults such as head injury [16]. Transcriptomic 
analyses have revealed over activation of microglia-based 
inflammation and phagocytic programs in both normal aging 
and the AD brain [6,17]. In vitro induced Pluripotent Stem Cell 
(iPSC) models have illustrated that  microglia exhibit 
heightened proinflammatory responses, altered morphology, 
reduced Aβ phagocytosis, and diminished capacity for lipid 
uptake, all of which can negatively impact neuronal activity and 
network coordination [18,19].

Additionally, the  isoform disrupts cholesterol transport 
to astrocytes [20], thereby affecting their metabolic and immune/
inflammatory signaling support to neurons and exacerbating 
maladaptive responses to pathology. In human iPSCs derived 
from cognitively normal individuals,  homozygous 
astrocytes exhibit reduced efficiency in neurotrophic actions in 
neuron co-cultures [21]. Neurons exposed to conditioned media 
from  astrocytes show increased basal mitochondrial 

ε4
[22]. Glial Fibrillary Acidic Protein (GFAP), a potential biomarker of 
cytoskeletal damage in astrocytes, and myo-inositol, a metabolic 

emission tomography [23,24]. 

APOE ε4
 knock-in mice show synaptic dysfunction and reductions 

in dendritic arborization and spine density leading to poor 
spatial learning and memory [25-27]. Similar results were noted 
in a different  mouse model generated by targeted 
replacement [28]. Dendritic spine morphological alterations are 
known to occur in older adults with  with no evidence of 
dementia [29]. 

 is associated with neurovascular dysfunction and loss 
of integrity of the Blood-Brain Barrier (BBB) [30,31].  
targeted replacement mice exhibit decrease in vascular density 
and resting cerebral perfusion without concurrent alterations in 
blood pressure. Additionally, changes to homeostatic mechanisms 
responsible for regulating sufficient blood supply during brain 
activity, such as neurovascular coupling and endothelium-
initiated microvascular response, have been linked to heightened 
white matter damage and cognitive decline in these mice 

[30]. These same alterations might also undermine the integrity 
of the BBB. The anatomical foundation of the BBB is the cerebral 
microvascular endothelium, which, along with astrocytes, 
pericytes, neurons, and the extracellular matrix, constitute the 
"neurovascular unit". Tight Junctions (TJ) between endothelial 
cells of the BBB regulate diffusion of water-soluble substances 
from the blood into the brain. Multi-omics analysis (RNA, 

mice indicates an early disruption of the transcriptome, followed 
by an impact on signaling networks related to BBB health in brain 
endothelium and pericytes, preceding behavioral changes [32]. 
Other factors, like diet and biological sex, may interact with 

cognitive performance in animal models [33]. 

Taken together, these findings highlight the need to understand 
the impacts of APOE ε4 on brain structure and function that 
may contribute ARCI, rather than focusing solely on risk for AD 
pathology [34]. 

APOE ε4 and cognitive aging
It is commonly assumed that prodromal AD pathology results 
in poorer cognitive performance among APOE ε4 carriers, 
particularly verbal memory. However, a recent comprehensive 
review found that only 25% of studies of older adults reported 
poorer verbal memory for ε4 carriers compared to noncarriers, 
and even fewer reported differences in working memory, executive 
functions, or processing speed [35]. Longitudinal studies are 
equally inconsistent, with some reporting more rapid cognitive 
decline among ε4 carriers relative to noncarriers even after 
controlling for the presence of AD and other neuropathologies, 
while others have reported no changes over time [36-47]. Studies 
of episodic memory, however, provide a more consistent picture, 
suggesting that APOE ε4 carriers rely on holistic or familiarity-
based information during the retrieval of memory details. For 
example, when recalling autobiographical memories, older 
ε4 carriers generate fewer spatial, temporal, and perceptual 
episodic details and have more difficulty generating examples of 
unique personal events compared to noncarriers [48,49]. Studies 
of object memory demonstrate that ε4 carriers and noncarriers 
are equally good at recognizing ‘old’ objects, but ε4 carriers are 
impaired when identifying the location of the object within an 
array and more likely to commit false alarms of similar objects 
[50,51]. APOE ε4 carriers either have more difficulty encoding 
spatial-temporal details into memory representations, or they 
rely on gist-like representations to a greater degree during 
memory recall. 

Whether poor episodic memory performance results from pre-
clinical AD pathology and/or ε4’s other impacts on brain function 
remains unclear. Some studies have taken a post-hoc approach, 
reporting that episodic memory differences between ε4 carriers 
and noncarriers disappeared after removing individuals from 
the original analyses who developed AD years later, implicating 
a more prominent role of preclinical AD pathology on memory 
function in these studies [52]. However, other studies have found 
continued evidence of poor performance among ε4 carriers on 
tests of memory and other cognitive tasks. These results persisted 
even after excluding individuals who were diagnosed with 
dementia, with Corley and colleagues using a follow-up period 
lasting 12 years and Gharbi-Meliani and colleagues using more 
than 20 years, suggesting that influences beyond AD pathology 
were responsible for poor memory performance [12,53]. Taken 
together, these approaches by themselves are not sufficient to 
clarify ε4’s potential effect on cognitive functioning independent 
of AD pathology.

Memory and other cognitive changes likely reflect a combination 
of phenotypic effects and, for some, prodromal pathology, as 
well as protective factors that may ameliorate both of these 
influences. No studies to date have obtained biomarkers from a 

proteome,  and phosphoproteome) of young ApoE

 astrocyte-derived media, but not in media from ε3  astrocytes 

4ApoE

Aβ in 

positivity 
Aβ marker for  astrocytes, been linked to higherhave  both 

in cognitively unimpaired older adults, as measured by
 positron 

4ApoE

3ApoE

4ApoE
 to influence BBB function and contribute to changes 

4ApoE

 alleles or wild-type  mice compared  to those carrying 

4 knock-in 

ApoE4

ApoE4

ApoE4

ApoE4

ApoE4

ApoE4
ApoE4

noted in 

and glycolytic metabolic rates when 

challented

 with challenged

Vol. 15 No. S9: 00

5

4
Vol. 15 No. S9: 004



2024
Journal of  Neurology & Neuroscience

Vol. 15 No. S9: 005

ISSN: 2171-6625

© Under License of Creative Commons Attribution 3.0 License 3

sufficiently large sample of ε4 carriers that could disentangle the 
various contributions of  on ARCI. 

Taking a precision aging approach 
Separating the impacts of the APOE ε4 allele on brain structure 
and function from AD pathology is a current challenge in 
cognitive aging research. We have argued elsewhere that future 
research must take an individualized approach to understand 
this complexity [1,54]. This would involve investigating multiple 
potential impacts of  on brain structure and function 
simultaneously rather than focusing solely on cognitive outcomes.

Prodromal AD pathology cannot be evaluated sufficiently with 
cognitive screening with instruments such as the MMSE or MoCA, 
nor is the diagnosis of MCI, since most of these individuals will not 
develop AD [55]. PET measurement of Aβ and phosphorylated 
tau (p-tau) provides localization of pathology, but is invasive and 
expensive, with limited availability. The reliability of emerging 
blood markers of Aβ and p-tau is increasing, providing a cost-
effective way to measure overall burden of AD brain pathology 
[56]. It is important to note, however, that the presence of Aβ is 
not a guarantee of impending dementia. Carriers of ε4 can show 
elevated levels of Aβ compared to noncarriers without evidence 
of cognitive impairment or dementia, even beyond age 100 [57-
65].

Other biomarkers obtained from blood and CSF may be 
particularly helpful in detecting brain dysfunction attributed 
to mechanisms other than AD neuropathology. Age-related 
inflammation can be measured by the soluble form of the 
Triggering Receptor Expressed on Myeloid cells 2 (sTREM2), which 
was shown to be elevated in aging irrespective of ε4, amyloid 
levels, and sex [66,67]. Neurofilament Light chain protein (NfL), 
a well-established blood biomarker associated with brain injury 
in neurogenerative diseases, stroke, brain trauma, cardiovascular 
disease, can provide insight into the structural integrity of axons 
[68-70]. Neuronal pentraxin 2 (NPTX2), also known as Neuronal 
Activity-Regulated Pentraxin (NARP), is an immediate-early gene 
involved in guiding synaptic plasticity and a potential biomarker 
of synaptic damage and early neurodegeneration [71]. Finally, 
assessing synaptic integrity in studies of AD and other neurologic 
conditions revealed lower levels of neurogranin in the CSF, a 
protein expressed in pyramidal cells of the hippocampus and 
cortex [72-75]. These burgeoning biomarkers, among others, 
may provide valuable insight into the influence of additional 
mechanisms on brain structure and function. Incorporating them 
in future studies with ε4 carriers will be a critical step toward 
understanding its impact on the brain in a more holistic way. 

Various neuroimaging modalities can also provide insight into 
other potential impacts of  on brain structure and function. 
MRI spectroscopy may be particularly helpful in disentangling 
cell loss from neuroinflammation, through measurement of 
the glial marker myo-inositol, which is elevated in the presence 
of astrocytes and microglia, and N-Acetylasparate (NAA) and 
glutamate, which decrease as a result of neuronal loss [76,77]. 
Other PET measures of brain inflammation include Translocator 
Protein (TSPO), an outer mitochondrial membrane protein 

expressed in activated microglia, and Monoamine Oxidase-B 
(MAO-B), a PET biomarker associated with reactive astrogliosis 
[77-79]. Synaptic Vesical protein 2A (SV2A) PET imaging is 
another novel technique that may reflect decreases in synaptic 
density [80]. Changes in neurovascular function can be assessed 
using quantitative Arterial Spin Labelling (ASL) MRI, which has 
been shown to be moderated by APOE ε4 status, and Cerebral 
Metabolic Rate of glucose (CMRgl) measured by FDG-PET imaging 
[81,82]. Dynamic Contrast-Enhanced MRI and ASL can be used to 
measure BBB permeability [83,84]. Thus far, studies of cognitively 
normal ε4 carriers using DCE-MRI are inconsistent, with some 
finding increased BBB permeability within the hippocampus 
among older carriers compared to noncarriers, while another 
found a trend toward enhanced permeability among middle-
aged carriers compared to noncarriers [31,85]. On the other 
hand, several studies of older ε4 carriers using ASL appear to 
be more consistent, indicating that higher cerebral blood flow 
is associated with poorer performance on verbal memory and 
pattern separation [81,86]. Further implementation of these 
imaging techniques will continue to solidify ε4's role with the 
neurovasculature.

Conclusion
This brief review extends our understanding of ε4’s impact on 
the aging brain. Expanding the use of novel biomarkers and 
neuroimaging methods that are informed by animal studies may 
help disentangle APOE ε4’s potential phenotypic contributions 
to ARCI from risk for AD. Future studies taking an individualized 
approach by assessing multiple risk factors may help clarify the 
various ways APOE ε4 can potentially contribute to ARCI and, for 
some individuals, conversion to dementia later in life.
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