Flyer

Archives in Cancer Research

  • ISSN: 2254-6081
  • Journal h-index: 14
  • Journal CiteScore: 3.77
  • Journal Impact Factor: 4.09
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • OCLC- WorldCat
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • Google Scholar
  • J-Gate
  • Secret Search Engine Labs
  • International Committee of Medical Journal Editors (ICMJE)
  • Zenodo
Share This Page

EGF induces paradoxical growth arresting via the up-regulation of PTEN by activating Ref-1/Egr-1 in human NSCLC cells

International Conference on Cancer Epigenetics and Biomarkers
October 26-28, 2017 Osaka, Japan

In-Hye Jung, Je-Won Ryu and Sang-Wook Lee,

Asan Medical Center, South Korea
University of Ulsan College of Medicine, South Korea

Scientific Tracks Abstracts: Arch Can Res

Abstract:

Epidermal growth factor receptor (EGFR) signaling promotes cell proliferation and survival in several types of cancer. Here, however, we showed that EGF inhibits proliferation and promotes apoptosis in non-small cell lung cancer (NSCLC) cells. In A549 cells, EGF increased redox factor-1 (Ref-1) expression and the association of Ref-1 with zinc finger-containing transcriptional regulator (EGR1) via activation of p22phox, RAC1 and an NOX subunit. EGF increased p22phox and RAC1 expression through activation of purinergic receptors (P2Y). Elevated Ref-1/EGR1 levels increased phosphatase and PTEN levels, leading to inhibition of the Akt pathway. EGF-induced PTEN up-regulation increased apoptosis and autophagy-induced damage in A549 cells, whereas Ref-1 knockdown blocked EGF-induced PTEN up-regulation in an NOX -p22phox subunitindependent manner. In addition, p22phox knockdown restored EGF-induced effects, implying that changes in P2Y activity caused by EGF, which activates NOX via RAC1, influenced Ref-1-mediated redox regulation. Finally, EGF similarly attenuated cell proliferation and promoted autophagy and apoptosis in vivo in a xenograft model using A549 cells. These findings reveal that EGF-induced redox signaling is linked to Ref-1-induced death in NSCLC cells.

Biography :

In-Hye Jung has completed her MSc from University of Ulsan College of Medicine. She is the Fellow in Department of Radiation Oncology of Asan Medical Center.