Flyer

Journal of Neurology and Neuroscience

  • ISSN: 2171-6625
  • Journal h-index: 18
  • Journal CiteScore: 4.35
  • Journal Impact Factor: 3.75
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • Open J Gate
  • Genamics JournalSeek
  • The Global Impact Factor (GIF)
  • China National Knowledge Infrastructure (CNKI)
  • Directory of Research Journal Indexing (DRJI)
  • OCLC- WorldCat
  • Proquest Summons
  • Scientific Journal Impact Factor (SJIF)
  • Euro Pub
  • Google Scholar
  • Secret Search Engine Labs
Share This Page

Therapeutic ketosis and the broad field of applications for the ketogenic diet: Ketone ester applications & clinical updates

International Conference on Alzheimer and Dementia
July 12, 2021 | Webinar

Raffaele Pilla

St. John of God Hospital, Italy

Scientific Tracks Abstracts: ipjnn

Abstract:

It has been recently shown that nutritional ketosis is effective against seizure disorders and various acute/chronic neurological disorders. Physiologically, glucose is the primary metabolic fuel for cells. However, many neurodegenerative disorders have been associated with impaired glucose transport/metabolism and with mitochondrial dysfunction, such as Alzheimer’s/Parkinson’s disease, general seizure disorders, and traumatic brain injury. Ketone bodies and tricarboxylic acid cycle intermediates represent alternative fuels for the brain and can bypass the rate-limiting steps associated with impaired neuronal glucose metabolism. Therefore, therapeutic ketosis can be considered as a metabolic therapy by providing alternative energy substrates. It has been estimated that the brain derives over 60% of its total energy from ketones when glucose availability is limited. In fact, after prolonged periods of fasting or ketogenic diet (KD), the body utilizes energy obtained from free fatty acids (FFAs) released from adipose tissue. Because the brain is unable to derive significant energy from FFAs, hepatic ketogenesis converts FFAs into ketone bodies-hydroxybutyrate (BHB) and acetoacetate (AcAc)-while a percentage of AcAc spontaneously decarboxylates to acetone. Large quantities of ketone bodies accumulate in the blood through this mechanism. This represents a state of normal physiological ketosis and can be therapeutic. Ketone bodies are transported across the blood-brain barrier by monocarboxylic acid transporters to fuel brain function. Starvation or nutritional ketosis is an essential survival mechanism that ensures metabolic flexibility during prolonged fasting or lack of carbohydrate ingestion. Therapeutic ketosis leads to metabolic adaptations that may improve brain metabolism, restore mitochondrial ATP production, decrease reactive oxygen species production, reduce inflammation, and increase neurotrophic factors’ function. It has been shown that KD mimics the effects of fasting and the lack of glucose/insulin signaling, promoting a metabolic shift towards fatty acid utilization. In this work, the author reports a number of successful case reports treated through metabolic ketosis.